Language and affordance guided grasp pose generation

BY JOHANNES KOLHOFF

Outline

Motivation/reminder

Task definition

Current models:

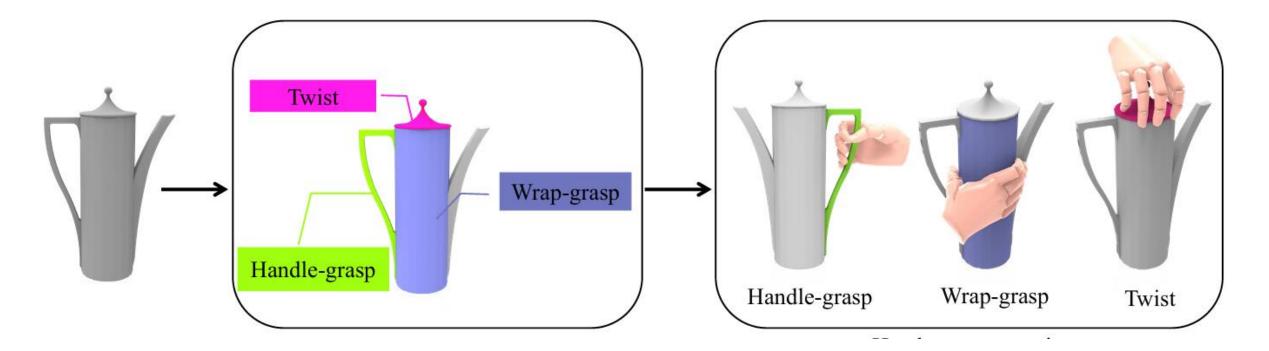
Language-Conditioned Affordance-Pose Detection

Language Guided Affordance (AffordDexGrasp)

Summary

Motivation

Where would you grasp this teapot?



What is Affordance

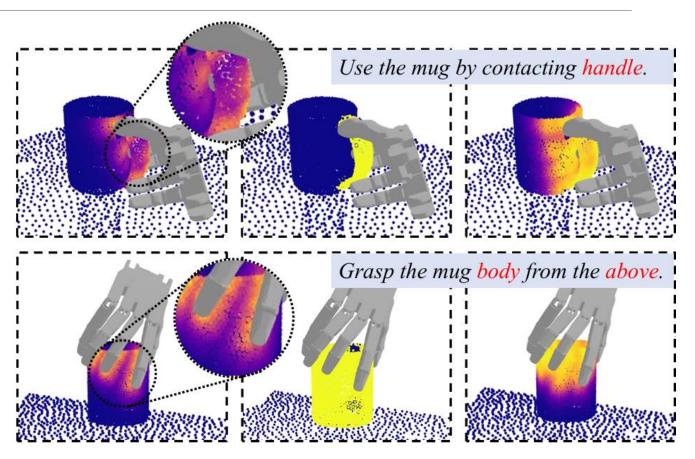
"Affordance" depends on:

Object shape

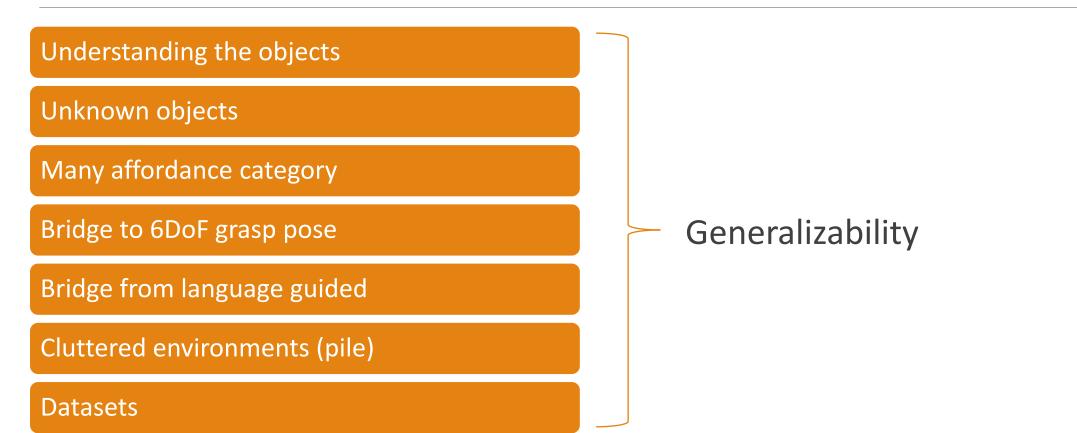
Object type (what is it)

Intention (what do you want to do?) Also, your manipulator

> Object in its context!How an object can be used



Challenges:



Task description

Input

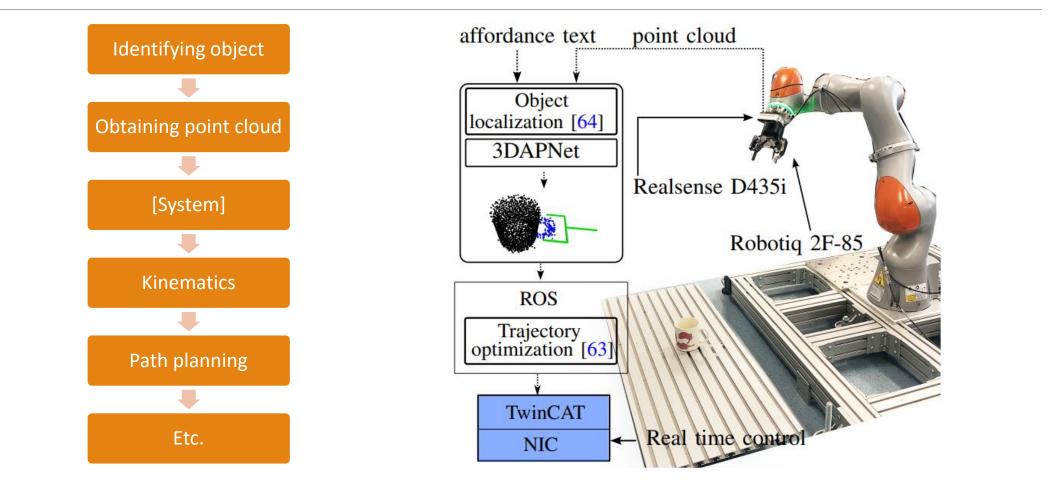
- 3D point cloud
- Natural language

Affordance: predict Object context

Generate according grasp pose

Output: Grasp pose

Excluded from Task



Approaches

Encoding point cloud and text as embeddings

Processing point cloud to explicit affordance map (point-based label)

Implicit affordance map

Pose generation

Language-Conditioned Affordance-Pose Detection - Dataset

New dataset based on 3D AffordanceNet and 6-DoF GraspNet

28K gripper poses in total

Manual annotation of affordance category's

Converted to point cloud (set to 2,048 points)

Dataset is triplet of point could, affordance category and pose

No explicit affordance in data set! (No affordance ground truth)

Input: point cloud and text (affordance)

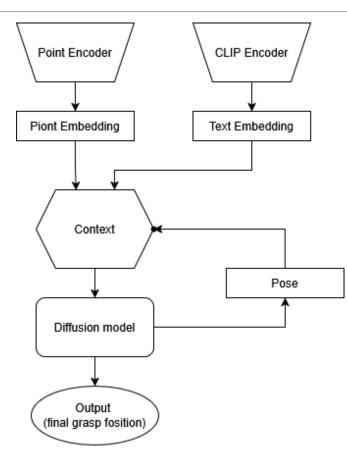
Point cloud and text are encoded separately

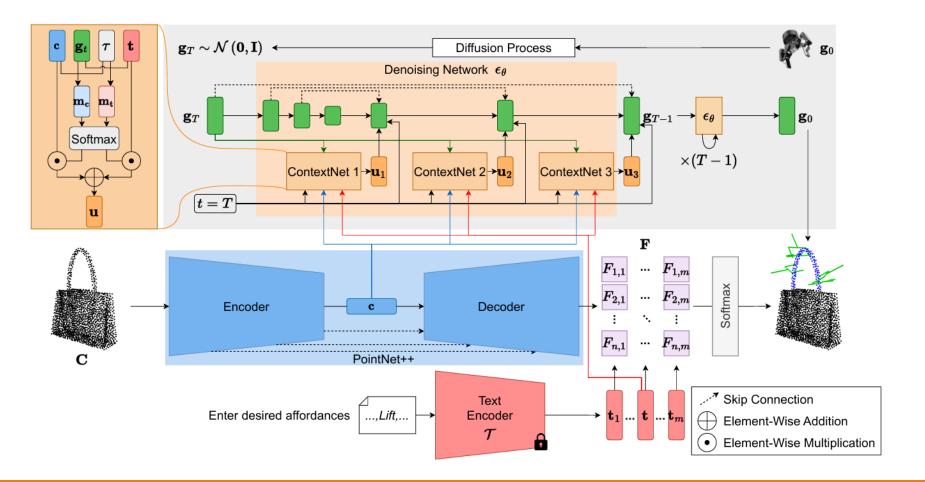
Grasp estimation is diffusion based

Context for diffusion is made up of embeddings of:

• Point cloud, text, robot state and timestep

One network (end to end)





Language-Conditioned Affordance-Pose Detection – Training

Text encoder is frozen

Point encoder is trained to correspond to text embeddings

Affordance loss

Diffusion model it trained on gaussian noise on pose T = 1000
Pose loss

Whole network is trained

• Total loss = Affordance loss + Pose loss

Trained as single network

Language-Conditioned Affordance-Pose Detection – Results

Affordance metrics:

- mIoU (mean Intersection over union)
- Acc (overall accuracy of all points)
- mAcc (mean accuracy over all affordances)

Pose generation metrics:

- mESM (mean evaluated similarity metric)
- mCR (mean coverage rate)

		TABLE	II		
SINGLE-B	RANCH VS	. Jointl	y Learne	D NETWOR	К
Method	Affordance Detection			Pose Estimation	
	mIoU↑	Acc↑	mAcc↑	mESM↓	mCR↑
Affordance Only Pose Only Both	55.65 - 56.18	60.73 - 61.77	58.80 	0.147 0.120	_ 41.29 44.63
TABLE III The Effectiveness of ContextNet					
ContextNet	Affordance Detection			Pose Estimation	
	mIoU↑	Acc↑	mAcc↑	mESM↓	mCR↑
× √	53.97 56.18	60.20 61.77	58.49 59.26	0.433 0.120	12.61 44.63

Confirmed the two loss functions correlate

Training Context net is worth it

Demonstration

Robotic Demonstrations

ADVANTAGE

Open vocabulary

Expansion to new affordances and objects possible

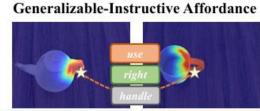
Diffusion (few samples)

DISADVANTAGE

Always requires affordance instruction Expansion to new affordances limited Word choice matters Single object only No explicit affordance

AffordDexGrasp: Dataset

New open set dataset based on language-guided dexterous grasp dataset tabletop environment and 33 categories

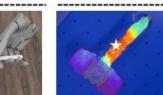


Use the teapot with grasping the handle from the right.

Use the mug by contacting the handle from the right.

Use the frying pan and grasp handle from the right.

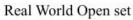
Hold the body of trigger sprayer from the left.

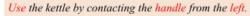


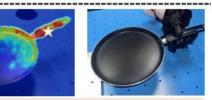
Use the hammer and grasp handle from the back.

Use the mug by contacting the handle from the right.

Hold the body of trigger sprayer from the left.



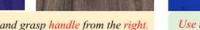




Use the frying pan and grasp handle from the back.

Hold the body of the lotion pump from the left.

Hold the bottle body from the left.



Unseen Category

17

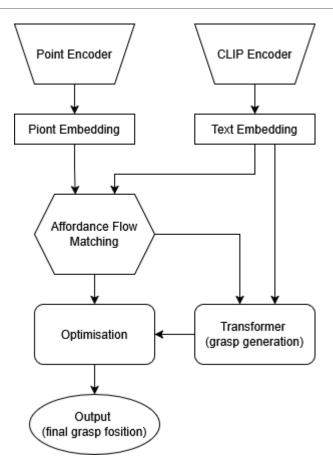
Input:

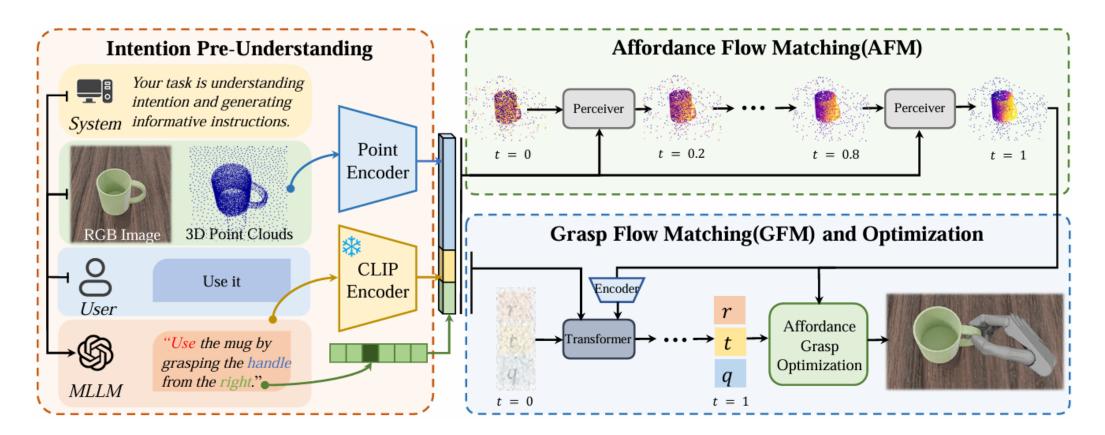
- Natural language user input
- RGB image
- Point cloud

Utilizes MLLM to intuit and guide affordance

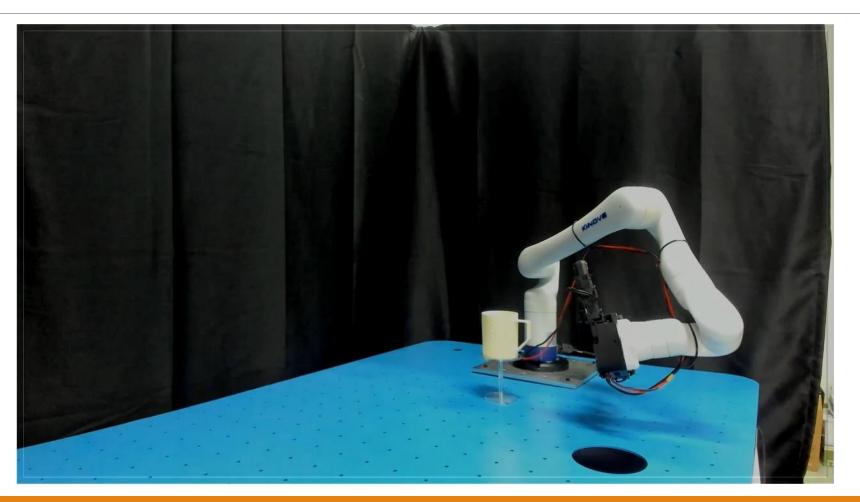
Closer to sequential processing:

- First create an affordance map
- Then determine gasp from affordance map + affordance encoding





Demonstration



ADVANTAGE

Open to natural language instructionsBut not necessary!

Use of RGB image

Robust to different formulations

Actual affordance map

DISADVANTAGE

Input needs RBG image, point cloud and instruction for best performance

Still has real world gap

Affordance map is based on gaussian distribution

Summary

Utilize 3D/2.5D vision

Gather context information (image + text/situation)

Integration of affordance and grasp pose estimation

Challenges:

- Pressley defining the problem (+dataset)
- Measuring success
- Applying to real world (multiple objects, point cloud render etc.)

Sources

[1] "Visual Affordance and Function Understanding: A Survey" 2018 Mohammed Hassanin, Salman Khan, Murat Tahtali

[2] "AffordPose: A Large-scale Dataset of Hand-Object Interactions with Affordance-driven Hand Pose" 2023 Juntao Jian, Xiuping Liu, Manyi Li, Ruizhen Hu, Jian Liu

[3] "Learning 6-DoF Task-oriented Grasp Detection via Implicit Estimation and Visual Affordance" 2022 Wenkai Chen, Hongzhuo Liang, Zhaopeng Chen, Fuchun Sun and Jianwei Zhang

[4] "Language-Conditioned Affordance-Pose Detection in 3D Point Clouds" 2024 Toan Nguyen, Minh Nhat Vu, Baoru Huang, Tuan Van Vo, Vy Truong, Ngan Le Thieu Vo, Bac Le, Anh Nguyen

[5] "AffordDexGrasp: Open-set Language-guided Dexterous Grasp with Generalizable-Instructive Affordance" 2025 Yi-Lin Wei, Mu Lin, Yuhao Lin, Jian-Jian Jiang, Xiao-Ming Wu, Ling-An Zeng, Wei-Shi Zheng